Earthquakes today

Current and latest world earthquakes breaking news, activity and articles today

Geological news

Climate Change Could Negatively Affect Chase Lake Pelican Population


Climate Change Could Negatively Affect Chase Lake Pelican Population

Earlier spring nesting related to climate change could negatively affect the survival of pelican chicks at Chase Lake National Wildlife Refuge, N.D., according to a new U.S. Geological Survey report.

USGS scientists found that American white pelicans are migrating north to a large nesting colony at Chase Lake National Wildlife Refuge about 16 days earlier in the springtime than they did 45 years ago. The earlier migration is likely spurred by warmer spring temperatures on the pelicans’ wintering grounds and along their migration route, but ideal post-hatching weather conditions have not advanced at the nesting colony. Now, vulnerable pelican chicks face a higher risk of encountering life-threatening wet and cold conditions.

Chase Lake is a refuge for the largest American white pelican colony in North America, so declining chick survival rates at this refuge could be especially damaging. On average, over 26,000 adult pelicans nested annually at Chase Lake between 2004 and 2008.

“Given that nearly half of the entire pelican breeding population nests at fewer than 10 colonies in the northern plains, maintaining good productivity at these colonies is important to the health of the species,” said Marsha Sovada, USGS scientist and lead author of the study. “Increased mortality of chicks at Chase Lake is a conservation concern.”

The study found that while spring temperatures in the northern plains have progressively increased since 1965, the timing of severe weather in the Chase Lake area has not changed during this period. Because pelican eggs are hatching earlier than in the past, the chicks are at their most vulnerable stage of growth—between two and three weeks old—during a time when extreme cold and wet weather is more likely.

Researchers observed significant loss of chicks to exposure in four of five years (2004–2008) of field study. For example, at Chase Lake in June 2008, about 80 percent of the pelican chicks between two and three weeks old died of exposure during a period of severe weather.  

The study was published today in the journal PLOS ONE, and is available online.

For more information on pelican population dynamics in the Northern Plains, please visit the USGS Northern Prairie Wildlife Research Center website.

 

USGS Newsroom


More information

Parameter Value Description
Magnitude mb The magnitude for the event.
Longitude ° East Decimal degrees longitude. Negative values for western longitudes.
Latitude ° North Decimal degrees latitude. Negative values for southern latitudes.
Depth km Depth of the event in kilometers.
Place Textual description of named geographic region near to the event. This may be a city name, or a Flinn-Engdahl Region name.
Time 1970-01-01 00:00:00 Time when the event occurred. UTC/GMT
Updated 1970-01-01 00:00:00 Time when the event was most recently updated. UTC/GMT
Timezone offset Timezone offset from UTC in minutes at the event epicenter.
Felt The total number of felt reports
CDI The maximum reported intensity for the event.
MMI The maximum estimated instrumental intensity for the event.
Alert Level The alert level from the PAGER earthquake impact scale. Green, Yellow, Orange or Red.
Review Status Indicates whether the event has been reviewed by a human.
Tsunami This flag is set to "1" for large events in oceanic regions and "0" otherwise. The existence or value of this flag does not indicate if a tsunami actually did or will exist.
SIG A number describing how significant the event is. Larger numbers indicate a more significant event.
Network The ID of a data contributor. Identifies the network considered to be the preferred source of information for this event.
Sources A comma-separated list of network contributors.
Number of Stations Used The total number of Number of seismic stations which reported P- and S-arrival times for this earthquake.
Horizontal Distance Horizontal distance from the epicenter to the nearest station (in degrees).
Root Mean Square sec The root-mean-square (RMS) travel time residual, in sec, using all weights.
Azimuthal Gap The largest azimuthal gap between azimuthally adjacent stations (in degrees).
Magnitude Type The method or algorithm used to calculate the preferred magnitude for the event.
Event Type Type of seismic event.
Event ID Id of event.
Event Code An identifying code assigned by, and unique from, the corresponding source for the event.
Event IDS A comma-separated list of event ids that are associated to an event.

Leave a Reply